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ABSTRACT: Surface-enhanced spatially offset Raman
spectroscopy (SESORS) is a label-free vibrational spec-
troscopy that has the potential for in vivo imaging. Previous
SESORS experiments have been limited to acquiring
spectra using SERS substrates implanted under the skin or
from nanoparticles embedded in tissue. Here we present
SESORS measurements of SERS active nanoparticles
coated with a Raman reporter molecule (nanotags)
acquired, for the first time, through bone. We demonstrate
the ability of SESORS to measure spectra through various
thicknesses (3−8 mm) of bone. We also show that diluted
nanotag samples (∼2 × 1012 particles) can be detected
through the bone. We apply a least-squares support vector
machine analysis to demonstrate quantitative detection. It
is anticipated that these through-bone SESORS measure-
ments will enable real-time, non-invasive spectroscopic
measurement of neurochemicals through the skull, as well
as other biomedical applications.

Imaging of the brain is generally performed using techniques
such as magnetic resonance imaging (MRI), functional MRI

(fMRI), computed axial tomography (CT), and positron
emission tomography (PET).1,2 These techniques allow for
imaging of various brain functions, including blood flow,
glucose uptake, and oxygen consumption,2 which are usually
reported as a ratio of change with respect to the brain at rest.
Although these modalities are useful, they do have some
limitations in terms of brain imaging. PET is the only technique
which provides a reliable, quantitative measure of blood flow
and oxygen consumption because it has been validated against
standards, but it requires use of radioactive isotopes. fMRI does
not have an absolute reference standard to which it can be
compared and relies on the blood oxygen level dependent
(BOLD) signal, which correlates with deoxyhemoglobin levels
that can fluctuate due to changes in blood volume or
oxygenation.1,2 CT is an X-ray-based technology which has
very good resolution and can be used to detect structural
changes, but it does not provide any functional information.1

Additionally, these techniques do not allow for quantification of
neurotransmitters present in the brain.
Neurotransmitters such as dopamine and serotonin play

critical roles in neurological functions, however little is known
about their local concentrations in the brain. Normally the
concentrations of these neurotransmitters are measured
exogenously, either in the blood or urine, where the

concentrations are significantly lower than in the brain. The
only local concentration measures have been achieved using
fast scan cyclic voltammetry, where holes are drilled in the skull,
electrodes are inserted into parts of the brain known to release
dopamine, and local measurements of dopamine are made.3−6

Wightman et al., found the local concentrations to be on the
order of 1−3 μM.6 To more fully understand brain function, a
non-invasive methodology for measuring concentrations of key
neurochemicals needs to be developed.
With optical imaging, the brain can be studied in vivo, using

near-infrared (NIR) light for penetrating the skin, skull, and
brain.1 There are a variety of endogenous and exogenous forms
of contrast that provide information about the structure and
function of tissues over a large scale from single cells to whole
organism imaging.7 The different absorptive properties of cell
components, and intrinsic fluorescence from proteins, lipids,
and metabolites, can all be used as forms of contrast for
imaging.7 Techniques for optical imaging include optogenetics,8

two-photon microscopy,9 and optical coherence tomography
(OCT).10 With these techniques, in vivo studies can be
performed over multiple time points and in a non-destructive
manner, however these techniques are all invasive. Optoge-
netics and OCT both involve drilling holes in the skull to insert
optrodes and catheters, respectively; in two photon microscopy,
a craniotomy must be performed to gain access to brain.
Additinally, for all of these techniques, there is a trade-off
between imaging depth and resolution.7

Here, we present a non-invasive method for spectroscopic
measurements of tissue through bone. Our approach utilizes
the combined power of two Raman spectroscopies, surface-
enhanced Raman spectroscopy (SERS) and spatially offset
Raman spectroscopy (SORS). SERS is a powerful vibrational
spectroscopy that allows for label-free, highly sensitive and
selective detection of low concentration analytes through
amplification of the localized plasmon resonances of small
noble metal nanoparticles. Although SERS began as an
electrochemical method more than 35 years ago,11 it has
been applied in many areas of research, including biology, in
recent decades.12−14 Many of the biological applications of
SERS have been performed in vitro, with cells, bacteria, and in
various tissues.15−17

SORS allows Raman measurements to be made through
distinctly different layers within a diffusely scattering
medium.18−21 In SORS, the Raman spectra are collected
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from a location that is spatially offset from the incident laser
beam. In this experiment, the photons that scatter from the
surface of the bone return to the collection optics on the same
trajectory as the incident beam. Photons that interact with the
tissue behind the bone diffuse laterally in the material and are
scattered in a wide angular distribution around the incident
laser excitation at the surface. This allows for sub-surface
spectra to be preferentially collected. Additionally, SORS can
suppress auto-fluorescence arising from the surface.21 By
combining SERS and SORS, it has been demonstrated that
SORS measurements can be made at greater depths than
previously possible,22,23 and has made in vivo applications of
SERS possible. This combined surface-enhanced SORS is
designated as SESORS. We have previously demonstrated the
use of SESORS for in vivo glucose sensing.24,25

We demonstrate here the first SESORS measurements of
nanoparticles embedded in tissue through bone. Previous
studies have demonstrated that with strongly enhancing
nanoparticles, such as SERS nanotags which are known to
have enhancement factors of up to 108,26,27 it is possible to
measure SERS signals to depths of 20−25 mm in tissue.22,23

Our approach involved injecting nanotags, ∼90 nm gold cores
with a Raman reporter molecule trans-1,2-bis(4-pyridyl)-
ethylene (BPE) on the surface, encased in ∼50 nm silica shells
(Cabot Security Materials Inc., Mountain View, CA), into ovine
tissue attached to a bone. Using previously described
instrumentation25 we collected SESORS spectra through the
bone. Briefly, spectra were collected at 785 nm laser excitation
using collection optics and a custom-made 26 fiber bundle, with
the fibers arranged in a 6 mm diameter circle on the collection
end, and vertically aligned at the detection end (Figure 1a).
The nanotags were injected (volume = 100 μL, which

corresponds to a maximum dosing of ∼9 × 1013 particles)
into the tissue adjacent to the bone, and with the laser incident
on the bone surface, SESORS spectra were collected through
the bone (Figure 1b). The bolus of nanotags expanded in the
tissue when injected, so we believe the actual number of
particles contributing to the SESORS signal is less than the
total number of particles given above. Quantification of the
number of particles contributing to the SESORS signal is
currently under way.
Studies on the optical properties of the skull measured the

absorption and scattering coefficients at wavelengths of 650 to
950 nm1,28 and 800−2000 nm.29 These studies found that
cranial bones are partially transparent at 785 nm, allowing the
NIR light to penetrate the skull. Post-mortem forensic
measurements of skull bones have determined that the
thickness of the human skull depends on both location of
bone on skull and gender of person, with thicknesses ranging
from 3 to 14 mm and an average thickness of 8 mm.30 To test
the feasibility of applying our methodology to studying the
brain, we collected SESORS spectra through various thick-
nesses of the ovine bone, ranging from 3 to 8 mm thick.
Spectra were acquired at different locations along the bone,

with thickness increasing from 3 to 8 mm, with 1 mm
increments. The uncorrected spectra show residual fluores-
cence from the bone, as well as a peak at 960 cm−1, which arises
from the bone phosphate ν1 mode31 (Figure S1). The raw
spectra were processed by baseline fitting and subtraction.
These baseline-corrected spectra were plotted in a waterfall plot
(Figure 2A), where it is evident that the BPE signal intensity
decreases with increasing bone thickness. The representative
SESORS spectra (Figure 2B) show how the thickness of bone
affects the SESORS intensity. We note that even at 8 mm bone
thickness, the characteristic peaks of BPE are still observable.
Specifically, the A1g modes of BPE at 1008 (ν13), 1200 (ν9,10),
1338 (ν6), 1604 (ν2), and 1640 (ν1) cm−1 are clearly
visible.26,32 The efficiency of scattering detection through the
bone was determined by comparing the integrated intensity of
the 1200 cm−1 peak through the various thicknesses of bone to
the integrated integrated intensity of the same peak from
spectra collected through a cuvette. The scattering efficiencies
were calculated as the integrated intensity of the BPE peak from
the through the bone spectra normalized by the accumulation
time and laser power divided by the same value for the BPE
nanotags in a cuvette. The values range from 3.5% at 3 mm
down to 0.2% at 8 mm. These results indicate that a large
amount of the Raman scattered signal is lost in traveling
through the bone. However, even with 0.2% scattering
efficiency, the spectra are strong enough to be seen with the
eye.
In addition to determining the thickness of bone through

which the SESORS data could be collected, we also investigated
the concentration of BPE nanotags required to obtain a signal.
SESORS spectra were taken of the original BPE nanotags
sample, along with 10×, 20×, 30×, 35×, and 40× dilutions,
utilizing the same piece of bone. We removed the original tissue
and used fresh samples of tissue behind the bone to collect
spectra. A volume of 100 μL of nanotags was injected into each
piece of tissue, and spectra were collected at the 3 mm bone
thickness. We found that we were able to obtain SESOR
spectra even down to the 40× dilution (∼2 × 1012 particles).
We also performed chemometric analysis for quantitative

detection utilizing the least-squares support vector machine
regression (LS-SVR) method and leave-one-out (LOO) cross-

Figure 1. (A) Schematic of SESORS instrumentation, with collection
and detection ends of fiber shown. (B) 785 nm laser spot (circled in
red) on ovine shoulder bone with tissue attached. The BPE nanotags
were injected into the tissue at several locations adjacent to the bone
and SESORS spectra were collected through the different thicknesses
of bone.
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validation algorithm using MATLAB (Math Works, Natick,
MA) and LS-SVM lab1.8 toolbox.33 Calibration models were
developed with SESORS spectra and reference concentrations.
Of the three SESORS spectra of each sample collected, two
were used to build calibration models and one was used to test
the prediction ability of models (Figure 3). Several models with
different regularization parameters and kernel widths were
generated. The LS-SVR calibration model was chosen as the
final model based on performance, which was judged by the
root-mean-square error of calibration (RMSEC = 0.00174) and
root-mean-square error of prediction (RMSEP = 2.193). LS-
SVR is a relatively new class of multivariate methods formulated
by Vapnik and co-workers.34,35 LS-SVR addresses nonlinear
effects that are commonly present in biological tissue samples
which arise from tissue absorption and scattering. The LS-SVR
method develops nonlinear regression models capable of
quantitative concentration predictions in complicated biological
systems with better accuracy as compared to conventional
linear calibration methods such as partial least-squares (PLS).
Figure 3 shows the quantitative prediction ability of SESORS

through bone. Twelve randomly chosen independent SESORS
measurements were used to build the calibration model, and six
additional spectra were used to validate the model. The LS-SVR
analysis results in a RMSEC of 0.00174 and a RMSEP of 2.19.
As shown in Figure 3, with SESORS we were able to
demonstrate quantitative detection ability with reasonable
accuracy as most of calibration and validation points closely

follow the ideal unity line in the plot. The error in the most
diluted sample was larger than those of other sample dilutions.
This could be improved by increasing the number of data
points in the calibration, especially in the low concentration
range.
To summarize, we present the first demonstration of utilizing

SESORS for detection of a Raman reporter molecule through
bone. All of the peaks of the BPE nanotags were visible in
spectra acquired through bone of thicknesses from 3 to 8 mm
(which is the average thickness of the human skull). We also
demonstrated detection of the BPE nanotags at 40× dilution
(∼2 × 1012 particles), which were validated using a LS-SVR
model. The LS-SVR data showed remarkable agreement
between the calibration and validation data sets. As current
chemically selective imaging techniques are not capable of non-
invasivein vivo sensing in the brain, we believe that SESORS has
enormous potential for use as an in vivo spectroscopy approach,
and in the future, a Raman imaging technique, for studying
neurochemicals in the brain.
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Figure 2. (A) Waterfall plot of baselined SESOR spectra taken at
various bone thickness. The false color represents signal intensity from
highest (red) to lowest (light blue). (B) Representative baselined
SESOR spectra taken at bone thicknesses of 3, 5, and 8 mm. For all
spectra, λex = 785 nm, t = 10 s, P = 50 mW.

Figure 3. Calibration and validation data sets of SESORS quantitative
measurements of BPE functionalized SERS nanotags through bone.
Spectra of the SERS nanotags were collected at 0× (∼9 × 1013

particles), 10× (∼9 × 1012 particles), 20× (∼4.5 × 1012 particles), 30×
(∼3 × 1012 particles), 35× (∼2.6 × 1012 particles), and 40× (∼2 ×
1012 particles) concentrations. The LS-SVR calibration plot was
constructed using 12 SESORS spectra, and the validation plot was
constructed using 6 SESORS spectra. RMSEC = 0.00174 and RMSEP
= 2.19; λex = 785 nm, P = 50 mW, tacq = 10 s.
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